CD105 antagonizes the inhibitory signaling of transforming growth factor beta1 on human vascular endothelial cells.
نویسندگان
چکیده
CD105 (endoglin), a receptor for transforming growth factor beta (TGFbeta), is highly expressed in tissue-cultured, activated endothelial cells in vitro and in tissues undergoing angiogenesis in vivo. The absence of CD105 in knockout mice leads to their death from defective vascular development, but the role of CD105 in the modulation of angiogenesis has not been elucidated. TGFbeta1 is a well-recognized regulator of angiogenesis. Using an antisense approach, we have shown that inhibition of CD105 protein translation in cultured human endothelial cells enhances the ability of TGFbeta1 to suppress growth and migration in these cells. The ability of endothelial cells to form capillary tubes was evaluated by the use of a 3-dimensional collagen matrix system where TGFbeta1 not only reduced the length of capillary-like structures, but also caused massive mortality in CD105-deficient cells compared to control cultures. These results provide direct evidence that CD105 antagonizes the inhibitory effects of TGFbeta1 on human vascular endothelial cells and that normal cellular levels of CD105 are required for the formation of new blood vessels.
منابع مشابه
Transforming growth factor-beta 1 (TGF-beta1) induces angiogenesis through vascular endothelial growth factor (VEGF)-mediated apoptosis.
VEGF and TGF-beta1 induce angiogenesis but have opposing effects on endothelial cells. VEGF protects endothelial cells from apoptosis; TGF-beta1 induces apoptosis. We have previously shown that VEGF/VEGF receptor-2 (VEGFR2) signaling mediates TGF-beta1 induction of apoptosis. This finding raised an important question: Does this mechanism stimulate or inhibit angiogenesis? Here we report that VE...
متن کاملTransforming growth factor-β increases the expression of vascular smooth muscle cell Markers in human multi-lineage progenitor cells
BACKGROUND Vascular smooth muscle cell (SMC) differentiation is an essential component of vascular repair and tissue engineering. However, currently used cell models for the study of SMC differentiation have several limitations. Multi-lineage progenitor cells (MLPCs) originate from human umbilical cord blood and are cloned from a single cell. The object of this study was to investigate whether ...
متن کاملLaryngeal carcinoma recurrence rate and disease-free interval are related to CD105 expression but not to vascular endothelial growth factor 2 (Flk-1/Kdr) expression.
BACKGROUND Tumour angiogenesis is the result of an inbalance between anti- and pro-angiogenic factors. CD105 (endoglin) is a component of the receptor complex of transforming growth factor (TGF-beta1). Vascular endothelial growth factor receptor 2 (VEGFR2 or Flk-1/KDR) belongs to the high-affinity VEGF receptors. The aim of the study was to investigate the expression, cellular localization and ...
متن کاملQuinazoline derivative compound (11d) as a novel angiogenesis inhibitor inhibiting VEGFR2 and blocking VEGFR2-mediated Akt/mTOR /p70s6k signaling pathway
Objective(s): We previously reported a series of quinazoline derivatives as vascular-targeting anticancer agents. In this study, we investigated the mechanism underlying the anti-angiogenic activity of the quinazoline derivative compound 11d. Materials and Methods: We examined the effects of quinazoline derivative 11d on vascular endothelial growth factor receptor-2 (VEGFR2) activation via VEG...
متن کاملTransforming growth factor-beta1 downregulates caveolin-1 expression and enhances sphingosine 1-phosphate signaling in cultured vascular endothelial cells.
In vascular endothelial cells, specialized microdomains of plasma membrane termed caveolae modulate various receptor signal transduction pathways regulated by caveolin-1, a resident protein of caveolae. We examined whether transforming growth factor-beta1 (TGF-beta1), a multifunctional cytokine, alters expression levels of caveolin-1 and influences heterologous receptor signaling. Treatment of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- FASEB journal : official publication of the Federation of American Societies for Experimental Biology
دوره 14 1 شماره
صفحات -
تاریخ انتشار 2000